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Abstract—A model [6+5] segment coupling process involving a C-terminal valine hexapeptide acid and a resin-attached pentapep-
tide amide, which N-terminated in a hindered Aib unit, was examined using a variety of HOAt-derived coupling reagents. Best
results were observed with N-HAPyU in DCM solvent in which loss of configuration amounted to 5.8%.
� 2007 Elsevier Ltd. All rights reserved.
It is known that as the amino acid residue to which a
chiral amino acid or peptide residue is coupled becomes
more-and-more sterically hindered, the rate of coupling
decreases and correspondingly the risk of loss of config-
uration at the reacting chiral carboxylic acid residue
increases.1 The activated intermediate presumably has
more chance for undergoing loss of configuration, possi-
bly via an oxazolone intermediate, during the slow cou-
pling process. Examples include the coupling of the
oxazolone derived from Z-Aib-Phe-OH to the series of
amino acid esters H-Gly-OEt, H-Ala-OMe and H-Aib-
OMe.1
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Abbreviations: Aib, a-aminoisobutyric acid residue; Boc, tert-butyl-
oxycarbonyl; DCC, dicyclohexylcarbodiimide; DB(DMAP), 2,6-
di-t-butyl-4-(dimethylamino)pyridine; DCM, dichloromethane; DIC,
N,N 0-diisopropylcarbodiimide; DIEA, N,N-diisopropylethylamine;
DMF, N,N-dimethylformamide; Fmoc, 9-fluorenemethyloxycarbonyl;
N-HAPyU, 1-(dipyrrolidinylmethylene)-1H-1,2,3-triazolo [4,5-b] pyri-
dinium hexafluorophosphate 3-oxide; N-HATU, 1-[bis(dimethyl-
amino)methylene]-1H-1,2,3-triazolo[4,5-b] pyridinium hexafluoro-
phosphate 3-oxide; PS, proton sponge, 1,8-bis(dimethylamino)naph-
thalene; N-TBTU, 1-[bis(dimethylamino)methylene]-1H-benzotriazoli-
um tetrafluoroborate 3-oxide; TMP, 2,4,6-trimethylpyridine; TFA,
trifluoroacetic acid.
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Because newer coupling reagents based on 1-hydroxy-7-
azabenzotriazole (HOAt)2 have made it possible to de-
crease the loss of configuration for coupling at ordinary
proteinogenic amino acids, we have now examined some
of these newer reagents in the case of couplings to seg-
ments N-terminating in an Aib unit. A common system,
which includes a number of Aib units at various posi-
tions and thus represents a convenient model for such
systems, is the alamethicin class of peptaibols.3

Prior to the development of a convenient stepwise solid-
phase route to the alamethicins via Fmoc amino acid
fluorides4 these naturally occurring materials had rou-
tinely been approached via segment coupling tech-
niques.5 For success in such cases the requisite
segment couplings were always designed to occur, for
the nucleophilic component, at an ordinary protein-
ogenic amino acid with the carboxylic acid component
terminating in either a non-chiral or ‘safe’ chiral amino
acid such as Gly, Aib or Pro.6 Indeed the fact that the
achiral Aib unit can be used at the C-terminal position
clearly shows that coupling at carboxylic acid Aib units
is much more easily achieved than coupling to the amino
group of an Aib residue. During an early study of a seg-
ment-based route to alamethicin recorded by Schmitt
and Jung5b the coupling of Boc-Pro-Val-OH to H-Aib-
Aib-OMe was shown to be compromised by the
formation of 20–30% of the DD-Val epimer of the desired
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Scheme 1.
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tetrapeptide. Therefore, the scheme adopted by these
workers reversed the identities of the nucleophilic
and electrophilic residues involved in the coupling
process. Recently, Peggion et al.7 promoted a related
segment coupling technique as a convenient approach
for the synthesis of a wide variety of alamethicin
analogs.

In the present work we have reversed the positions of the
key amino acid units, deliberately placing the nucleo-
philic Aib unit, as in the Schmitt/Jung study at the N-
terminal position of the nucleophilic segment in order
to determine if this ‘illogical’ design could succeed in
the case of the newer coupling reagents. In order to ef-
fect a solid-phase segment coupling process the desired
pentapeptide unit was built onto a solid support to give
1 (Scheme 1). The carboxylic acid segment 2 to be
coupled to 1 terminated in valine. Coupling was
expected to provide the undecapeptide attached to sup-
port 3. Upon Fmoc deblocking and removal from the
support by consecutive treatment with piperidine and
TFA, the extent of absorption in the HPLC trace near
9.36 min due to residual unreacted pentapeptide amide
5 can be used as a measure of the completeness of the
coupling process.

H-Aib-Aib-Glu-Gln-Phe-NH2

5

Table 1. [6+5] Coupling of 2 with 1 to give resin 3a

Run Coupling reagent Base

1 N-HATU (3 equiv) DIEA (6 equiv)
2 N-HATU (3 equiv) TMP (6 equiv)
3 N-HATU (3 equiv) DB(DMAP) (6 equiv)
4 N-HATU (3 equiv) DB(DMAP) (6 equiv)
5 N-HATU (3 equiv) PS (6 equiv)
6 N-HATU (3 equiv) DB(DMAP) (3 equiv), PS (3 equi
7 N-HATU (3 equiv) DB(DMAP) (3 equiv), PS (3 equi
8 N-HAPyU (3 equiv) DB(DMAP) (3 equiv), PS (3 equi

a Under the conditions given only runs 7 and 8 were judged to be nearly com
due to recovered pentapeptide amide 5. Yields for 4 cannot be given since th
evidence of completion of the coupling process and the relative extent of t
Upon comparing N-TBTU/DIEA and N-HATU/DIEA
as coupling reagents for this system in DMF over a per-
iod of 35 min only the latter gave evidence of the desired
undecapeptide amide and if the latter reaction was al-
lowed to proceed for 16 h the reaction was nearly com-
plete. However, the loss of configuration was massive
(65.4% of the DD-epimer) as seen in Table 1. Formation
of over 50% of the DD-epimer suggests the incursion of
asymmetric induction,8 presumably via the intermediacy
of the peptide oxazolone derived from 2. Substitution of
the weaker base TMP for DIEA gave slightly less DD-epi-
mer (52.7%) although the reaction appeared to be less
complete.

Previously, it had been shown that DB(DMAP)9 is a ter-
tiary base which is comparable to TMP in avoiding the
loss of configuration during peptide coupling although
as a stronger base (pKa about 9 vs 7.43 for TMP) it
should allow for a greater extent of coupling. This was
confirmed by the comparison of runs involving coupling
over 16 h, which with N-HATU/DIEA and N-HATU/
DB(DMAP) led to 65.4% and 39.2% of the DD-Val epi-
mer, respectively. With a 1:1 mixture of the still stronger
base proton sponge along with DB(DMAP) coupling
over a period of 5 h led to a reduction in the extent of
DD-Val epimer formation to 26.0%.

Further improvements in DMF solvent were not
achieved and it was only by switching to DCM that sig-
nificantly better results were observed. Thus with
DB(DMAP)/PS/N-HATU in DCM coupling was nearly
complete after 14 h and the loss of configuration was re-
duced to 18.7% (Table 1, run 7). Finally when the more
efficient coupling reagent N-HAPyU9 was substituted
for N-HATU these conditions gave nearly complete
coupling and only 5.84% of the DD-Val epimer (Table 1,
run 8). The only system, which achieved better results,
involved the HOAt/DIC system10 in DCM (4.5% DD-
Val epimer) and while the coupling yield was low after
14 h, presumably extending the reaction time might
allow for the completion of the reaction.

These results appear to set the limits to what we could
achieve with these newer reagents in this highly hindered
system. With two strong, highly hindered bases,
DB(DMAP) and PS, coupling is more effective than
with either of these bases alone or with either the strong
Coupling time (h) Solvent % DD-Val epimer

16 DMF 65.4
24 DMF 52.7
16 DMF 39.2
5 DMF 28.6
5 DMF 33.9

v) 5 DMF 26.0
v) 14 DCM 18.7
v) 14 DCM 5.84

plete based on the absence of significant absorption in the HPLC trace
e crude reaction mixtures were only examined by HPLC analysis for the
he formation of the DD-Val epimer of 4.
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base DIEA alone or the much weaker base TMP
alone.11,13

In summary, it is shown that for the solid-phase segment
coupling of 2 to 1, for avoiding, loss of configuration at
the DD-Val carboxylic acid unit, the guanidinium-type
coupling reagent N-HAPyU is superior to N-HATU,
DCM is preferable as a solvent to the more polar
DMF and that careful selection of the base is important.
Thus, a mixture of DB(DMAP) and PS is more effective
than either one alone and much more effective than
DIEA or TMP. While the use of a strong base is impor-
tant in boosting the coupling process toward comple-
tion, these bases must be sterically hindered in order
to avoid extensive loss of configuration. As yet no expla-
nation can be offered as to why the mixture of
DB(DMAP) and PS is more effective than either base
alone.
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Experimental details for carrying out stepwise solid-
phase syntheses for authentic samples of all peptides
used and solid-phase segment coupling reactions. In
addition high- and low-resolution MS spectra and
HPLC traces for all model peptides are presented as well
as HPLC traces for the undecapeptide amide obtained
by segment condensation under various conditions. Sup-
plementary data associated with this article can be
found, in the online version, at doi:10.1016/j.tetlet.
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determined by the analysis of the authentically synthesized
model compounds. The completeness of the coupling
process could be judged qualitatively by the absence of
significant absorption in the HPLC trace near the reten-
tion time (9.36 min) of the recovered amide 5. Integration
of the peaks at 15.19 and 16.14 min due to the DD-Val
epimer and the all LL-epimer, respectively, of the undeca-
peptide amide 4 gave the extent of the loss of configuration
as noted in Table 1. Details for representative runs are
given in the Supplementary data.
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